Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 26(1): 82-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37345434

RESUMO

The objective of this study is to develop a low-cost biosorbent using residual seeds of the Citrullus lanatus fruit for the removal of cationic dyes. Physicochemical parameters such as pH, adsorbent mass, contact time, and temperature were evaluated for their effects on dye removal. The biosorbent is composed of lignin and cellulose, exhibiting a highly heterogeneous surface with randomly distributed cavities and bulges. The adsorption of both dyes was most effective at natural pH with a dosage of 0.8 g L-1. Equilibrium was reached within 120 min, regardless of concentration, indicating rapid kinetics. The Elovich model and pseudo-second-order kinetics were observed for crystal violet and basic fuchsin dye, respectively. The Langmuir model fitted well with the equilibrium data of both dyes. However, the increased temperature had a negative impact on dye adsorption. The biosorbent also demonstrated satisfactory performance (R = 43%) against a synthetic mixture of dyes and inorganic salts, with a small mass transfer zone. The adsorption capacities for crystal violet and basic fuchsin dye were 48.13 mg g-1 and 44.26 mg g-1, respectively. Thermodynamic studies confirmed an exothermic nature of adsorption. Overall, this low-cost biosorbent showed potential for the removal of dyes from aqueous solutions.


In this work, a novel biosorbent was developed using residual Citrullus lanatus fruit seeds that can efficiently remove cationic dyes from aqueous solutions. The biosorbent's composition includes lignin and cellulose, and its surface structure is highly heterogeneous, consisting of randomly distributed cavities and bulges. The biosorbent demonstrated a rapid and efficient adsorption capacity for both crystal violet and basic fuchsin, regardless of dye concentration. Moreover, the biosorbent was successfully employed in the treatment of a synthetic mixture containing several dyes and inorganic salts. Finally, the application of the biosorbent in continuous adsorption showed a low zone of mass transfer and high breakthrough time, indicating it to be an excellent material for fixed-bed operation. Overall, this study provides a low-cost and efficient alternative for the removal of dyes from aqueous solutions, with promising practical applications.


Assuntos
Citrullus , Poluentes Químicos da Água , Corantes/análise , Corantes/química , Pós/análise , Água/análise , Violeta Genciana/análise , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Biodegradação Ambiental , Sementes/química , Adsorção , Cinética
2.
Int J Phytoremediation ; 24(10): 1081-1099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784826

RESUMO

Amaranth dye (AD) is trisodium (4E)-3-oxo-4-[(4-sulfonato-1- naphthyl) hydrazono] naphthalene-2, 7-disulfonate and anionic in nature. In the present investigation, waste biomasses such as Terminalia chebula shell (TCS), Peltophorum pterocarpum leaf (PPL) and Psidium guajava bark (PGB) are explored as biosorbents for the first time toward the removal of AD from aqueous solution in a batch method. Influence of biosorption parameters such as pH, initial concentration of AD, biosorbents (TCS, PPL, PGB) dosage, temperature and contact time was studied. Biosorption equilibrium data was analyzed using two parameter isotherms. The kinetics of the biosorption process was analyzed using different models to understand the rate-determining step. The results of the biosorption experiment and modeling investigation illustrated that the pseudo-second-order rate equation fits the experimental data and further the experimental results showed Langmuir isotherm fitted well the biosorption equilibrium data. TCS showed more efficiency toward the removal of AD than PPL and PGB. The value of enthalpy for TCS is 1.527 kJ/mol suggests that the AD removal process is endothermic. The positive value of entropy is 6.429 J/mol K indicates that the particle is randomly disordered and negative values of standard Gibbs free energy (ΔG°) suggested that the biosorption process is spontaneous.Novelty statementBiomasses of Terminalia chebula shell (TCS), Peltophorum pterocarpum leaf (PPL) and Psidium guajava bark (PGB) reported as first time explored biosorbent for amaranth dye (AD) removal from aqueous solution.Optimal biosorption parameter for AD removal determined.Experimental data examined using isotherm, kinetic and thermodynamic analysis.


Assuntos
Psidium , Terminalia , Poluentes Químicos da Água , Adsorção , Corante Amaranto , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Casca de Planta , Folhas de Planta , Termodinâmica , Água
3.
Environ Pollut ; 293: 118581, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34861332

RESUMO

The production of biochar from sewage sludge pyrolysis is a promising approach to transform the waste resultant from wastewater treatment plants (WWTPs) to a potential adsorbent. The current review provides an up-to-date review regarding important aspects of sewage sludge pyrolysis, highlighting the process that results major solid fraction (biochar), as high-value product. Further, the physio-chemical characteristics of sewage-sludge derived biochar such as the elemental composition, specific surface area, pore size and volume, the functional groups, surface morphology and heavy metal content are discussed. Recent progress on adsorption of metals, emerging pollutants, dyes, nutrients and oil are discussed and the results are examined. The sewage sludge-derived biochar is a promising material that can make significant contributions on pollutants removal from water by adsorption and additional benefit of the management of huge volume of sewage. Considering all these aspects, this field of research still needs more attention from the researchers in the direction of the technological features and sustainability aspects.


Assuntos
Poluentes Ambientais , Metais Pesados , Adsorção , Carvão Vegetal , Esgotos , Águas Residuárias
4.
Chemosphere ; 272: 129492, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35534951

RESUMO

In the past few decades, new contaminants of emerging concern (CECs) in the air, water, and soil have gained significant attention due to their adverse impact on human health and the environment. The sources of CECs have been identified in different forms from domestic and industrial activities such as personal care products and pharmaceuticals. It has been established that aqueous medium plays a major role in the dissemination of various contaminants, like drinking water, reservoirs, lakes, rivers and waste with water medium. There remains inadequate technology for the treatment of CECs in the wastewater systems. Though different techniques have advanced for the treatment of CECs, they still pose a severe threat to human health and disturb the ecological balance. In this review, the characteristics, recent technologies, risk assessment and management of CECs have been discussed. The primary aim is to highlight the new innovative and cost-effective technologies for the remediations of CECs in all forms. Biochar is readily and economically available in abundance and an economical adsorbent with 100% adsorptive removal for H2PO4-. The bibliometric analysis also performed to understand the emerging research trends on the treatment techniques, which can help in developing a guiding pathway to modern research in academia and industry.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Humanos , Lagos , Águas Residuárias , Água , Poluentes Químicos da Água/análise
5.
Environ Pollut ; 255(Pt 2): 113291, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600701

RESUMO

In the present investigation seaweeds of macroalgae like Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis used as novel biosorbent in native (KA, GS, GE) and ethanol modified (EKA, EGS, EGE) for Rhodamine B (RB) removal from aqueous solution in batch process. Effect of various biosorption parameters such as pH, initial concentration of RB, biosorbent dosage and contact time were studied. The maximum biosorption capacity determined as 9.84 (KA), 11.03 (GS), 8.96 (GE), 112.35 (EKA), 105.26 (EGS) and 97.08 mg/g (EGE), respectively towards the removal of RB from aqueous solutions. Better removal of RB was observed using EKA, EGS, and EGE biosorbents at 2.0 pH. The characterizations of the biosorbents were performed using Scanning Electron microscope and Fourier Transform Infrared Spectroscopy. Biosorption equilibrium data evaluated using Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Jovanovic isotherm model. The Langmuir isotherm model best suited the equilibrium data for all the biosorbents studied. The rate of RB removal subjected to kinetic analysis using pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich models. Pseudo-second-order kinetic model better described the experimental data of the RB biosorption. Desorption studies performed using 0.1 M sodium hydroxide as eluting agents for regeneration and recycle analysis. The recyclability of the six biosorbents showed consistent biosorption capacity towards RB removal up to the entire three cycles. The studied biosorbents sourced from large volume and easily available, further biosorption performance indicated that the KA, GS, GE, EKA, EGS and EGE could be used as efficient, alternative and eco-friendly biosorbents for the removal of harmful dyes in the environment.


Assuntos
Gracilaria/química , Rodaminas/análise , Rodófitas/química , Alga Marinha/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Termodinâmica
6.
Environ Monit Assess ; 188(7): 411, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27312254

RESUMO

Packed bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration. The adsorption column models such as Thomas, Adams-Bohart, Yoon-Nelson, and bed depth service time (BDST) were successfully correlated with the experimental data. The Yoon-Nelson and BDST model showed good agreement with the experimental data for all the studied parameter conditions. Results of the present study indicated that the chemically modified Swietenia mahagoni shell can be used as an adsorbent for the removal of Cr(VI) from industrial wastewater in a packed bed column.


Assuntos
Cromo/análise , Galvanoplastia , Meliaceae/química , Modelos Teóricos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Biomassa , Cromo/química , Resíduos Industriais , Tamanho da Partícula , Propriedades de Superfície , Poluentes Químicos da Água/química
7.
Prep Biochem Biotechnol ; 44(6): 633-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24499367

RESUMO

In the fermentation process, the separation of product and its purification is the most difficult and exigent task in the ground of biochemical engineering. Another major problem that is encountered in the fermentation is product inhibition, which leads to low conversion and low productivities. Extractive fermentation is a technique that helps in the in situ removal of product and better performance of the fermentation. An aqueous two-phase system was employed for in situ ethanol separation since the technique was biofriendly to the Saccharomyces cerevisiae and the ethanol produced. The two-phase system was obtained with polyethylene glycol 4000 (PEG 4000) and ammonium sulfate in water above critical concentrations, with the desire that the ethanol moves to the top phase while cells rest at the bottom. The overall mass transfer coefficient (KLa) was also estimated for the yeast growth at different rpm. The concentration and yield of ethanol were determined for conventional fermentation to be around 81.3% and for extractive fermentation around 87.5% at the end of the fermentation. Based on observation of both processes, extractive fermentation was found to be the best.


Assuntos
Etanol/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Extração em Fase Sólida/métodos , Água/química , Sulfato de Amônio/química , Etanol/metabolismo , Fermentação , Polietilenoglicóis/química
8.
World J Microbiol Biotechnol ; 30(6): 1669-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24436063

RESUMO

Industrial effluents from various sectors have become a matter of major environmental concern. The treatment of wastewater in recent year plays a significant role in order to remove the pollutants and to safeguard the water resource. The conventional wastewater treatment is considered costlier and associated with problem of sludge generation. Biosorption methods are considered as the potential solution due to their economical efficiency, good adsorption capacity and eco-friendliness. In this review, an extensive list of biosorbents from algae, bacteria, fungi and agricultural byproducts have been compiled. The suitability of biosorbents towards the eradication of heavy metals, textile dyes and phenolic compounds were highlighted. It is evident from the literature survey of recently published research articles that the biosorbents have demonstrated outstanding removal potential towards the wastewater pollutants. Therefore, biosorbents from the source of dead microbial and agricultural byproduct can be viable alternatives to activated carbon for the wastewater treatment.


Assuntos
Bactérias/metabolismo , Materiais Biocompatíveis/química , Fungos/metabolismo , Microalgas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Adsorção , Bactérias/química , Fungos/química , Microalgas/química , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...